Different Expression of mRNA of Lux-S in Low and High Caries Risk of Pre-School Children

Jedy¹, Boy Bachtiar², Boedi Oetomo Roeslan³, Heriandi Sutadi⁴*

1. Postdoctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.
2. Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.
3. Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia.
4. Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.

Abstract
The luxS mRNA expressing autoinducer-2 (AI-2) is maintained among many species of bacteria, including Streptococcus mutans. AI-2 plays a decisive promoting role in biofilm formation and maturation. The aim of this study was to determine the luxS mRNA expression in relation to caries status and caries activity among pre-school children. The cross-sectional study included 76 pre-school children (31 boys and 45 girls) aged 3 to 5 years old, from a kindergarten in Jakarta, Indonesia. The children were screened for caries status using dmft index. Dental plaque samples were obtained for caries activity screening using Cariostat, and for luxS mRNA expression determination using quantification real time-PCR (qPCR). Out of 76 subjects examined luxS mRNA expression was determined in 43 subjects. We divided the subjects with luxS mRNA expression into two groups: group 1 consisted of children who are caries free (dmft zero) and had no caries activity (Cariostat score 0); group 2 was comprised of children with caries and caries activity were scored as1 and above. There were 9 subjects in group 1 and 34 subjects in group 2, and the mean ± SD of luxS mRNA expression was determined to be 19.3±24.3 ng/mL and 41.7±29.1 ng/mL, respectively, and statistically different (p = 0.03). It can be concluded that the amount of luxS enzyme was lower in the caries free and no caries activity subjects compared to subjects with caries and caries active.

Clinical article (J Int Dent Med Res 2017; 10(Special Issue: pp. 590-593)
Keywords: mRNA of Lux-S, Caries Low and High, Pre school children.
Received date: 15 August 2017 Accept date: 17 September 2017

Introduction
Quorum sensing (QS) is a process by which bacteria communicate with each other by secreting chemical signals called auto inducers (AI). Among Gram-negative and Gram-positive bacteria, auto inducers -2 (AI-2) synthesized by the luxS enzyme is common.¹

AI-2 is an important signal molecule in multi-species biofilms. AI-2 plays a decisive promoting role in biofilm formation and maturation. The luxS gene is found in many species of bacteria,² including Streptococcus mutans, Streptococcus oralis, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and other oral micro organisms.³

⁴Corresponding author:
HeriandiSutadi,
Department of Pediatric Dentistry
Faculty of Dentistry, Universitas Indonesia
E-mail: ikga_fkgui@yahoo.com

Al-2 can also mediate oral Streptococci and Actinomycetes to form mixed biofilm⁴, where the formation of biofilm depends on AI-2 produced by oral streptococci⁵.

In recent years, reports of interference of these bacterial QS systems and new ways of inhibiting biofilm formation, has opened new avenues for intractable infectious disease research.⁶,⁷ To date the luxS gene expressed by oral streptococci in dental biofilm and its relation to caries activity has not been studied. The purpose of this study was to determine the expression level of luxS gene by ora streptococci in dental plaque, and its relation with caries activity in preschool children.

Methods
Caries status
Seventy-six children, aged 3 to 5 years old, from a kindergarten in Jakarta, Indonesia (39
boys and 37 girls) were recruited for this study. They were divided into two caries status groups, 15 caries free children and 61 children with caries whose decayed, missing, and filled tooth surface (dmfs) scores were 9.3 ± 5.3. Written informed consent was obtained from all parents, and the observational procedures were approved by the Institutional Ethical Committee of the Faculty of Dentistry, Universitas Indonesia. Pooled samples of dental plaque were taken with sterile cotton swabs from the buccal surfaces of the first mandibular primary molar.

The samples were immediately placed in sterilized tubes containing PBS with 2% sodium thioglycollate, stored on ice, and transferred to the laboratory within two hours.

Cariostat

For caries activity testing, the cotton swabs with dental plaque samples were put into the Cariostat ampoule then incubated at 37°C for 48 hours. The CARIOSTAT test reagen contains sucrose and carbon source. The results were determined by color change of the Cariostat due to acid production by degradation of sucrose. The result were determined based on the change of pH values between 4.0 and 7.0, which was indicated with a color scale including Blue, Green, Yellowish Green, and Yellow. Scoring was done by comparing the test tubes against a white background to determine color change in pH. The Cariostat result shows the tendencies of bacterial information in the oral cavity environment through the variation of bacteria in the dental plaque, which is a result of differences in eating habits, oral care, and lifestyles.

The caries activity indicated by the Cariostat test shows the amount of dental caries and the speed of caries development. Therefore, it is necessary to refer to the previous test result in order to evaluate the risk of caries.

Qualitative real time-PCR (qPCR)

Total RNA from growth in the THB media at 1, 5, 10, and 14 hours were extracted using the Trizol reagent (Invitrogen), according to the manufacturer’s protocol. SYBR Premix Ex Taq (TAKARA) was used for analysis (ABI PRISM 7300). The 16S rRNA gene was a housekeeping internal control. Both qPCR primers for detecting luxS mRNA and 16 sRNA gene was as reported by SYBR Green was measured. The formula of $2^{-\Delta\Delta C_{t}}$ was used to measure the level of luxS mRNA.²

Results

Out of 26 subjects examined in the caries free group (dmft zero) using Cariostat, a caries inactive status (score 0) with a pH of 6.8 was shown in 13 subjects (50%), a caries active status (score 1) with a pH of 5.2 was shown in 11 subjects (42.3%), while 2 subjects had a pH of 4.5 (7.7%) (score 2), and none showed marked caries activity (score 3), with a pH of 3.6 (Table 1).

<table>
<thead>
<tr>
<th>Cariostat scores</th>
<th align="right">N (%): Caries free</th>
<th align="right">Cariostat scores</th>
<th align="right">N (%): Caries</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td align="right">13 (50%)</td>
<td align="right">0</td>
<td align="right">11 (22%)</td>
</tr>
<tr>
<td>1</td>
<td align="right">11 (42.3%)</td>
<td align="right">1</td>
<td align="right">16 (32%)</td>
</tr>
<tr>
<td>2</td>
<td align="right">2 (7.7%)</td>
<td align="right">2</td>
<td align="right">16 (32%)</td>
</tr>
<tr>
<td>3</td>
<td align="right">0</td>
<td align="right">3</td>
<td align="right">7 (16%)</td>
</tr>
</tbody>
</table>

Of the 50 children in the caries group, 11 had a caries inactive status (22%) (score 0), 16 had a caries active score with a pH of 5.2 (32%) (score 1), 16 had a pH of 4.5 (32%) (score 2) and seven had a pH of 3.6 (16%) (score 3). The expression of the luxS mRNA enzyme was determined in 15 subjects out of 26 caries free children and in 28 subjects out of 50 children with caries.

Finally, we divided the subjects with luxS mRNA expression into two groups: group 1 (no caries) consisted of caries free (dmft zero) and no caries activity (Cariostat score 0) children; and group 2 (caries) consist of children with caries and caries active (Cariostat scores 1 and above). Of the 9 subjects in the group 1 and 34 subjects in group 2 the mean ±SD of luxS mRNA expression determined were 19.3 ± 24.3 ng/mL and 41.7 ± 29.1 ng/mL respectively. After statistically analysis using Student’s t-tests, the luxS mRNA expression in group 1 was significantly lower than in group 2 ($p = 0.03$).

Discussion

Streptococcus mutans is recognised as a major aetiological agent of dental caries. One of
its important virulence factors is its ability to form biofilms on tooth surfaces. Previous studies of the S. mutans luxS gene has demonstrated that luxS is required for a variety of cellular processes ranging from biofilm formation to acid tolerance.\(^\text{10}\) Previously, it has been reported that S. mutans interacts with the other oral flora of the dental plaque to mediate interspecies communication known as luxS-mediated QS.\(^\text{11}\) The luxS-mediated QS is well characterized to elicit interspecies communication and modulate multiple traits crucial to the establishment of S. mutans pathogenesis. Hence, the S. mutans flourishes in the buccal cavity via, the activation of the luxS gene which leads to the production of AI-2 and ensures its survival and virulent expression in multispecies environment. Researchers have shown that luxS deficient strains affects the expression of the virulence determinant to a greater extent (>50 %) and in parallel up regulate their acid-adaptive behaviors to increase their survival rate.\(^\text{12}\) Additionally, the luxS gene is highly conserved among the Gram positive and Gram negative bacteria and may operate as a global regulator and so be an essential factor for a drug target.\(^\text{11}\)

In this study, the subjects were divided into two groups, the first group was “no caries risk” due to dmft zero as well as the Cariostat scored of zero. The second group was “caries risk”, consisting of subjects with caries and Cariostat scored one and above. After the PCR procedure, the expression level of the luxS gene was determined in 43(56.6%) subjects and undetermined in 33 (43.4%) subjects. Out of the 43 subjects with determined luxS expression, 9 children were allocated as “no caries risk” while 34 children were “caries risk”. The results of this study showed that the level of luxS mRNA expression in subjects with “no caries risk”, were significantly lower compare to “caries risk” subjects.

These findings support the theory that S. mutans luxS enzyme is required for biofilm formation as well as acid tolerance.\(^\text{10}\) The result of this present study showed relationship between low-pH and higher amount of luxS seems consistent with previous findings that found a direct linkage between low-pH survival and dental caries. Cariogenic streptococci, such as S. mutans, need to survive within acid environment as a result of lactic acid production through fermentable sugars in dental biofilm.\(^\text{13}\)

The formation of biofilm depends on AI-2 produced by oral Streptococci mediated by the luxS enzyme. It is already known that bacteria expressing a mutation in the luxS gene in oral Streptococci cannot express AI-2, resulting in a failure of communication between oral Streptococci and Actinomycetes. This failure leads to loose biofilm formation and significantly decreased bacterial density.\(^\text{5}\) In addition, there is enormous functional diversity in poly microbial biofilm development in the oral cavity. For instance, AI-2 of Aggregatibacter actinomy cetemcomitans inhibits biofilm formation by Candida albicans.\(^\text{14}\)

Finally, the findings of this study may provide important understanding into the utilization of Cariostat as an uncomplicated diagnostic tool for predicting the dental caries risk based on the molecular luxS functionality in the development of dental biofilm.

Conclusions

Based on our results it can be concluded that the amount of the luxS enzyme was lower in caries free and no caries activity subjects by comparing to subjects with caries and caries active.

Acknowledgements

The authors thank to Dr. Armelia Sari and Dr. Widijanto Sudhanaat Faculty Dentistry, UniversitasTrisakti, Jakarta, Indonesia for their aid and help full discussions.

The publication of this manuscript is supported by Universitas Indonesia.

References

