The Prevalence of Caries and Gingivitis in Elementary School Children in Grade IV, V and VI in East Sinjai District

Adam M. Hamudeng¹, Farah Fadhillah¹*

1. Department of Pediatric Dentistry, Faculty of Dentistry, University of Hasanuddin, Makassar, Indonesia.

Abstract

The purpose of this study is to describe the prevalence of caries and gingivitis among to elementary school children in grades IV, V, and VI in East Sinjai.

This research was an observational analytic with cross-sectional study using a formula for sampling then got 100 samples and clinical examination of each sample using DMF-T index for caries and gingival index for gingivitis. Data were processed by SPSS program version 21.

Based on the data analysis, the result showed that prevalence of caries for elementary children in East Sinjai is low with average 1.5 according to WHO interpretation. The prevalence of gingivitis is low with average 0.5 for gingival index, these results were effect of areas factor and occupation. The incidence of caries and gingivitis in elementary children in Est Sinjai were low and caused by areas and parents education.

Keywords: Caries, Gingivitis, Elementary children, Knowledge, Education.

Received date: 10 October 2018 Accept date: 19 November 2018

Introduction

Oral health is important for general health and quality of life. One type of oral health is dental health. Dental health becomes important, especially for the development of children.¹ To assess the status of dental health, the presence and absence of dental disease can be monitored, including the degree of dental caries. Caries often occurs in children but parents pay less attention because of the assumption that the child's teeth will be replaced with permanent teeth. It is evident that untreated oral hygiene will be a source of infection for diseases affecting other organs.

Dental caries is one of the most common dental and oral diseases in the community, especially in children. Based on Household Health Survey (SKRT, 2004), caries prevalence in Indonesia reached 90.05%. According to WHO, the state of dental caries in Indonesia tends to increase from year to year. Another disease that often accompanies caries is a periodontal disease. Periodontal disease is mostly caused by pathogenic microorganisms on oral biofilms or dental plaques that accumulate around teeth with poor oral hygiene. The development of increased gram-negative and anaerobic bacteria in subgingival plaque is a sign of periodontal disease. Gingivitis is one of the periodontal diseases that often affects children and adolescents, with a percentage of 82.1%.²

The province of South Sulawesi has a high incidence of dental and mouth problems. On 25 November 2015, the province of South Sulawesi was termed the first healthy province in Indonesia. This predicate becomes a reference for South Sulawesi that this is not the end of the hard work of development in the health sector but a whip to keep trying to improve the health status of the community. One of the efforts is to improve the level of oral and dental health starting with children. This can also be seen from the ratio of the number of dentists and patients to be treated is as much as 8 per 1000 population.³

Information and promotion of dental and oral health issues should be introduced early to children so that they can know how important it is to maintain their oral and dental hygiene. It is also important to ensure child are free from dental diseases, such as caries and gingivitis. Based on the fact that dental caries and gingivitis is a disease that is often found in children, there

*Corresponding author:
Farah Fadhillah,
Department of Pediatric Dentistry
Faculty of Dentistry,
University of Hasanuddin
Makassar, Indonesia.
E-mail: fadhfarah@gmail.com
is still a minimal number of dentists improving the
degree of dental and oral health in Sinjai district.
Especially in East Sinjai district, the promotion of
dental health education still very low and
researchers intend on examining the prevalence
of caries and gingivitis in elementary school
children in grades IV, V and VI in East Sinjai
district.

Materials and methods

The type of this research is observational
analytic using cross-sectional study design. The
research was conducted in several elementary
schools in East Sinjai sub-district, namely SDN
156 Kaloling, SDN 127 Takkalalla, SDN 27
Kabupaten Sinjai, SDN 84 Kabupaten Sinjai,
SDN 25 Borong Utte Kabupaten Sinjai, SDN 210
Lengkese, SDN 28 Pakkita, SDN NO. 33
Patalassang, SDN 29 Maroanging, and SDN 92
Panaikang. This research was conducted on 28-29
May 2017.

The population of the study conducted in
the ten primary schools was 690 people. The
determination of the sample size in an important
study may be representative of the population or
sample. Determination of sample size if the
known population is as follows.

\[
n = \frac{NZ(1 - \frac{a}{2})^2 P(1-P)}{Nd^2 + Z^2(1-\frac{a}{2})^2 P(1-P)}
\]

n: Sample
N: Population
Z: standard normal distribution value, the
magnitude depends on the level of trust (TK), if
TK 90% = 1.64, TK 95%=1.96, TK 99%=2.57
P: proportion of events, if unknown is
recommended 0.5
d: major deviations; 0.1
so to know the minimum sample required for this
research are:

\[
n = \frac{690(2.57)^2 0.5(1 - 0.5)}{690(0.1)^2 + (2.57)^20.5(1 - 0.5)}
\]

\[
n = \frac{852.3495}{8.55}
\]

n = 99.69

so that the minimum sample size required in this
study is as many as 100 people.

Sampling technique is purposive sampling
that is sampling according to required sample
requirement. The sample of the research used
are elementary school students in grades IV, V,
and VI which are present when the examination
is done in school with the determination of
sample size as above. The independent
variables from this research are children of grade
IV, V and VI of elementary school and dependent
variable that is dental caries and gingivitis. The
tools and materials used in this study, namely
oral diagnostic equipment, dental probe, personal
protective equipment (gloves and mask), alcohol,
betadine, stationery, and inspection form sheets.
The type of data used is the primary data. Data
processing using SPSS version 21 for windows
8.0. Presentation of data in tabular form.

Results

Distribution of caries based on the school.
From (Table 1), it can be seen that in schools
located in non-coastal areas, such as SDN 27
Sinjai, has a very low caries percentage with
the least amount and SDN 25 Boronguttie has a low
caries percentage with the highest overall
amount. As for coastal areas, schools with very
low percentages of caries are SDN 92 Panaikang
and at least SDN 84 Sinjai.

Table 2 shows gingival health index
based on the origin of the school. It can be seen
that in non-coastal areas, students with mild
inflammation are at least SDN 210 Lengkese and
the highest number is SDN 28 Pakkita. In coastal
areas almost all students in schools located in
this region have only mild inflammation.

Table 3 shows the index of caries and
gingivitis based of the origin of the school with
the average def-t is 1.5 (low) and gingival index
0.5 (mild inflammation).
Discussion

The results of the study were analyzed using chi-square showing p-value <0.05 means there is a significant relationship between the location environment with dental and oral health problems can be seen that the prevalence of caries and gingivitis in children that occurred in East Sinjai district is still relatively low. There is a difference in the number of DMF-T indexes on the subject between the coastal and non-coastal areas of Jepara Regency, where the subject living on the coastal DMF-T index was lower at 1.88 compared in subjects residing in non-coastal areas of 4.14. The study also observed that health status of periodontal tissue studied coastal areas includes mild gingivitis with 92%, and moderate gingivitis 8%, whereas in non-coastal areas includes mild gingivitis 42%, moderate gingivitis with 52%, and severe gingivitis 6%. In addition, this is consistent with the assertion that coastal areas with those working as fishermen often consume fish, so that the oral cavity is good. While in the community in non-coastal areas that do not work as a fisherman causes lower fish consumption so that the condition of the oral cavity is worse. A significant difference in the DMF-T index between coastal and non-coastal areas can be attributed to food consumption patterns. The more often a person consumes the fish, the caries index will be lower.

As is well known that coastal locations, the fluoride content is also high at 1.2-1.4 mg/L. The benefits of water containing fluoride includes reducing the occurrence of dental caries 40% to 65%. Meanwhile, mineral fluoride basically aims to restore minerals in teeth lost due to acids derived from bacterial and sugar plaque. Without the addition of minerals, the teeth become easily damaged. In addition, the fluoride will also remove plaque containing bacteria in the teeth. As is known, bacteria will produce acid substances that damage the teeth. In some conditions, such as people suffering from dry mouth, gum disease, often suffering from cavities, and using braces, the use of fluoride in toothpaste or mouthwash is highly recommended. Therefore, this is one of the things that affect why caries index and gingivitis in children in elementary schools located on the coast have fewer risks. In addition, seawater has a microorganism that produces antibiotics.

Table 1. Caries index based on the school.

<table>
<thead>
<tr>
<th>Location</th>
<th>Schools</th>
<th>Very low</th>
<th>Low</th>
<th>Middle</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-coastal</td>
<td></td>
<td>n %</td>
<td>n %</td>
<td>n %</td>
<td>n %</td>
</tr>
<tr>
<td></td>
<td>SDN 210 Lengkese</td>
<td>5 50</td>
<td>3</td>
<td>2 20</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 25 Borontung</td>
<td>8 80</td>
<td>2</td>
<td>8 20</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 27 Sinjai</td>
<td>3 30</td>
<td>0</td>
<td>0 70</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 28 Pakkita</td>
<td>5 50</td>
<td>1</td>
<td>10 40</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 156 Kaloling</td>
<td>5 50</td>
<td>1</td>
<td>10 20</td>
<td>2 20</td>
</tr>
<tr>
<td></td>
<td>SDN 133 Pattalamang</td>
<td>7</td>
<td>70</td>
<td>1 10 20</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 127 Takkalala</td>
<td>8 80</td>
<td>0</td>
<td>2 00</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 92 Panaikang</td>
<td>9 90</td>
<td>0</td>
<td>0 10</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 29 Maronang</td>
<td>6 60</td>
<td>1</td>
<td>10 2 20</td>
<td>0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 84 Sinjai</td>
<td>4 40</td>
<td>2</td>
<td>20 40</td>
<td>0 0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60 60</td>
<td>13</td>
<td>13 23</td>
<td>4 4</td>
</tr>
</tbody>
</table>

Table 2. Gingival health index based on the school.

<table>
<thead>
<tr>
<th>Location</th>
<th>Schools</th>
<th>Healthy</th>
<th>Slight inflammation</th>
<th>Moderate inflammation</th>
<th>Severe inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-coastal</td>
<td></td>
<td>n %</td>
<td>n %</td>
<td>n %</td>
<td>n %</td>
</tr>
<tr>
<td></td>
<td>SDN 210 Lengkese</td>
<td>0</td>
<td>0</td>
<td>5 50 80</td>
<td>5 80 0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 25 Borontung</td>
<td>0</td>
<td>0</td>
<td>8 80 20 0</td>
<td>8 20 0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 27 Sinjai</td>
<td>0</td>
<td>0</td>
<td>6 60 40 0</td>
<td>6 40 0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 28 Pakkita</td>
<td>0</td>
<td>0</td>
<td>10 100 0 0</td>
<td>10 100 0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 156 Kaloling</td>
<td>0</td>
<td>0</td>
<td>9 90 1 10</td>
<td>9 90 1 10</td>
</tr>
<tr>
<td></td>
<td>SDN 133 Pattalamang</td>
<td>0</td>
<td>0</td>
<td>8 80 20 0</td>
<td>8 20 0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 127 Takkalala</td>
<td>0</td>
<td>0</td>
<td>10 100 0 0</td>
<td>10 100 0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 92 Panaikang</td>
<td>0</td>
<td>0</td>
<td>10 100 0 0</td>
<td>10 100 0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 29 Maronang</td>
<td>0</td>
<td>0</td>
<td>10 100 0 0</td>
<td>10 100 0 0</td>
</tr>
<tr>
<td></td>
<td>SDN 84 Sinjai</td>
<td>0</td>
<td>0</td>
<td>9 90 1 10</td>
<td>9 90 1 10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
<td>0</td>
<td>8 80 20 0</td>
<td>8 20 0 0</td>
</tr>
</tbody>
</table>

Table 3. Caries and gingivitis index based on school origin.
antimicrobials and antibacterials that can inhibit
the growth of disruptive bacteria and provide
dental enamel protection and help improve dental
and oral health because some of its ingredients
are proven to be useful for preventing caries and
other dental problems.\(^5\)

This study indicated that the subject
group domiciled in the coastal areas had a lower
DMF-T index. The results of this study in Takalar
district of South Sulawesi which states that the
average DMF-T value in Komara area (mountain)
is higher than in Topejawa area (coastal). This
may be due to the fact that people in the Komara
area get little food with people in Topejawa close
to seafood such as sea fish, tea, and some
vegetables.\(^6\)

From the results of the study also found
that one of the factors that may affect caries
status and gingival health is the parental
occupation. However, the result of chi-square
test with \(p > 0.05\) result means there is no
significant correlation between the type of
occupation with the dental and oral health status
of the child in this case caries and gingivitis.
This study is in line with some kindergartens in
Padang area that the result of statistical test
shows there is no significant relationship
between fathers occupation and child caries
status. This may be due to caries caused by
multiple factors such as behaviour in maintaining
dental health. If the family has good behaviour in
maintaining oral health then the child will have
good behaviour as well.\(^7\)

As mentioned above, the effect on the
caries incidence rate in children is the
environment and the level of parental knowledge
about the importance of maintaining good dental
and oral health early on. Researchers also
assume that education and parental knowledge
influence the number of caries incidence
occurring in primary school children in some
schools in East Sinai district. This is what causes
some schools in coastal and non-coastal
locations to have high and low caries incidence
rates. Recent research from Europe shows that
children from low-income families and those with
low levels of late education have a higher risk of
dental caries than children from high
socioeconomic families. Parents’ attitudes,
especially mothers, have an important role in
dental practice in their children. Mothers with low
levels of education, older age (over 30 years),
live in rural areas, and families with small
incomes may increase the incidence of dental
and oral caries in children. Mothers with a high level of
education have children with better dental health
compared with mothers with low levels of
education.\(^8\)

That children whose mothers deliver oral
health education early in the home show free
and oral caries than uneducated. However, there is no
influence of parental education on child dental
caries. The level of education presents the level
of a person's ability to obtain and understand
health information. The higher the level of
education a person assumed the better the level
of understanding of health information obtained.
The problem here is where the respondent's
parents obtained information about dental
hygiene. Researcher monitoring during the
research process found that some of the
respondents' parents stated that they rarely
obtained information on how to maintain oral
hygiene.\(^9\)

Another opinion that parent occupation can affect
the severity of caries and gingivitis and have an
indirect effect on tooth decay. In terms of
education, parents can only describe the level of
knowledge that they understand themselves. A
low level of parental education results in a low
level of education for children about the
importance of maintaining healthy teeth and
mouth.\(^10\)

Factors that cause a high index of dental
caries and child gingivitis is the lack of health
services obtained by the child due to low
socioeconomic level of the elderly. Someone who
is at a low socioeconomic level or is in poverty is
not capable of getting health care because of the
high cost of health care. This study is supported
by several studies which suggest that there is a
relationship between socioeconomic factors with
caries. The greater percentage of dental caries is
present in children with low parental education
levels compared with high parental education
levels. The socioeconomic level is a predisposing
factor for dental caries and gingivitis. People with
high caries categories are often associated with
socioeconomic factors, such as low-income, low
levels of education, employment and lack of
access to adequate health care. The
socioeconomic level of education can affect
one’s knowledge. Higher education will make a
person have better knowledge and insight so as
to influence the healthy behaviour of the person.
Dental caries index is higher in children with low
socioeconomic level due to lack of food intake received by children. The socioeconomic level can affect food intake so that children with low socioeconomic rates of caries prevalence are higher than children with high socioeconomic parent level. Children in infancy need nutritious food intake. Parents with low socioeconomic levels will pay less attention to the intake of foods consumed by children so that it can affect the child’s growth and affect the health of the body, including oral and dental health. If the intake of food received by the child is lacking calcium, the teeth can become vulnerable to caries. Dental caries index is higher in children with low socioeconomic level.11

Conclusions

The number of caries occurrence is most prevalent in grade 4 students while gingivitis is most prevalent in grade VI students. There was a significant association between coastal and non-coastal sites to caries and gingivitis incidence rates in primary school-aged children in East Sinjai district. There was no significant association between parental occupation and the incidence of caries and gingivitis in primary school-aged children in East Sinjai district. There is a significant relationship between knowledge and parental education with the incidence of caries and gingivitis in primary school-aged children in East Sinjai district.

Declaration of Interest

The author reports no conflict of interest and the article is not funded or supported by any research grant.

References