A Review of MicroRNA Associated with Oral Cancer

Khor Goot Heah1,2*, Nur Rawaidah Bt Mohd Shohri3, Syairah Nabila Bt Suhaimi3, Nurhanani Harun2,4, Nur Aliana Hidayah Mohamed1,2, Gabriele Ruth Anisah Froemming5

1. Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buluh, Selangor, Malaysia.
3. Faculty of Dentistry, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buluh, Selangor, Malaysia.
4. Centre of Oral and Maxillofacial Diagnostics and Medicine Studies, Faculty of Dentistry, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buluh, Selangor, Malaysia.
5. Faculty of Medicine and Allied Health Sciences, Universiti Malaysia Sarawak, Malaysia.

Abstract
Cancer of oral cavity is the sixth most common malignancy worldwide with over 500,000 new cases diagnosed annually and its incidence is rising in many countries. It is associated with a poor prognosis with less than 50% of 5-year survival rate. Oral cancer incidence in Malaysia varies between the different ethnic communities due to different sociocultural risk factors such as the betel chewing habit which it is a traditional stimulant mixture of areca nut and tobacco with the betel leaf. Moreover, despite recent advances in various treatment modalities, the survival rates of cancer patients had shown not markedly improved.

MicroRNAs or miRNAs are a group of small non-coding RNAs that post-transcriptionally regulate gene expression. Recent findings have strongly supported its role in cell regulations of essential processes including cell proliferation, apoptosis, development, differentiation and metabolism. However, dysregulation of miRNAs expressions have been implicated in malignancy which affects its functions as tumor suppressors and oncogenes in various cancers. Thus, this review of microRNA expression would provide information on microRNAs with potential role as the biomarkers in oral cancer treatment in the future.

Keywords: MicroRNA, Oral Cancer, Biogenesis, Expression, Biomarker.

Introduction
Cancer is listed as the major public health issues with considerable individual and socioeconomic impacts worldwide until today. It is also considered as a complex genetic disease that involves long-term accumulation of various mutations in coding as well as non-coding genes1. Cancer is appointed as one of the disease accounting toп most mortality rate, globally. In 2012, an estimated 14.1 million new cases of cancer were diagnosed worldwide with 8.2 million of death reported2.

*Corresponding author:
Khor Goot Heah
Centre of Preclinical Science Studies,
Faculty of Dentistry, Universiti Teknologi MARA,
Selangor, Malaysia.
E-mail: gootheah@salam.uitm.edu.my; gootheah@gmail.com

The most frequently diagnosed cancers by sex vary considerably across country3. The most commonly diagnosed cancer among men is lung cancer in most parts of Eastern Europe and Asia4. Among women, the most frequently diagnosed cancer is breast cancer in most parts of the world, including Australia, Western Asia, North Africa, North America, and parts of South America2. In many parts of the globe, oral cancer currently serves as one of the increasingly serious problems. An estimation of more than 500,000 new cases diagnosed every year pointed out that oral cancer is one of the most frequent cancers worldwide5. It is heterogeneous in nature and shows dismal survival rate of approximately 50% that has not changed for decades6.

The reported 5-year disease-specific survival rate in stage II of oral cancer patients was 39-85%7. While specific survival rate for stage III and IV of oral cancer patients were 27-
70% and 12-50%, respectively. Oral cancer includes cancers of the lip, tongue and rest of the oral cavity. Oral cancer which occurs among middle age male gives terrific impact towards their family and society.

Recently, miRNAs expression has been linked to cancer. Cancer is the product of alterations in oncogenes, tumour suppressor genes and most recently microRNA genes not as a single event or single change, but rather as a multistep process. MicroRNA (miRNA) mediates gene expression at the post-translational level by degrading or repressing target messenger RNAs (mRNA) or by translational inhibition of target genes. Several miRNAs have been identified associated with cancer, for examples, miR-143 and miR-145 have been found down-regulated in colorectal cancer and let-7a in lung cancer.

There are many classes of small endogenous RNA molecules, such as small transfer RNA (tRNA), ribosomal RNA (rRNA), small nucleolar RNA (snoRNA), small interfering RNA (siRNA) and microRNA (miRNAs). These molecules are distinguished based on their respective origins. miRNAs are short non-coding RNAs of 20-24 nucleotides that post-transcriptionally regulate gene expression. miRNAs can be located in introns, exons of coding genes, non-coding genes and intergenic regions. miRNAs precursors are usually found in clusters through various different regions of the genome, most frequently within intergenic regions and introns of protein coding genes.

The biogenesis and function of miRNAs (Figure 1) starts with the pri-miRNA transcripts which is generated by RNA polymerase II, either as separate transcriptional units or embedded within the introns of protein. After the pri-miRNA is synthesized, it is cleaved and a small hairpin structure that is termed pre-miRNA is released. In the nucleus, the microprocessor complex containing the RNase III enzyme Drosha and the DiGeorge syndrome critical region gene 8 (DGCR8), trims the primary transcript to release pre-miRNA hairpin. Pre-miRNA hairpin are exported out of the nucleus to the cytoplasm by exportin 5 (XPO5), a RAN-GTP dependent nucleo/cytoplasmic cargo transporter.

In the cytoplasm, a protein complex including DICER and Transactivating response RNA-Binding Protein (TRBP) further trims the pre-miRNA to produce an imperfect duplex containing both the mature miRNAs strand and its complementary strand (miRNA:miRNA*) for the regulation of cellular bio-functions. In mammals, miRNAs are predicted to control the activity of approximately 50% of all protein-coding genes. miRNAs provide a vital and powerful tool in gene regulation and thus a potential novel class of therapeutic targets. miRNAs play an evolutionarily conserved developmental role and diverse physiological functions in mammal.
miRNAs participate in the regulation of almost every cellular process investigated so far and that changes in their expression are associated with many human pathologies. Findings over the five years have strongly supported a role for miRNAs in the regulations of essential processes including cell proliferation, apoptosis, development, differentiation and metabolism.

miRNA Expression in Oral Cancer Study

miRNA has been proposed to have an association with oral cancer. According to several recent studies, approximately 30-50 miRNAs have been suggested to be linked with oral cancer using either independent in vitro or in vivo experiments and human study. However, there are only a few miRNA that have been proven to be involved in oral cancer. Table 1 summarizes miRNA expressions that have been reported recently.

Most miRNA expression profiling has been performed with the microarray analysis method and quantitative real-time Polymerase Chain Reaction (qPCR). Using these methods, some miRNAs show consistently altered expressions in different studies. For example, expression of miR-125b, miR-155, miR-124a, and miR-124b has been reported by at least two independent studies (Table 1). In the study by Faraoni et al. (2009) miR-155 has been found to be overexpressed in many cancer types including hematopoietic cancers, breast, lung and colon cancer.

Recently, upregulated expression of miRNA-21 in cell lines of oral cancer has been reported by Scapolli et al. (2010). Another study by Garzon et al. (2008) and Calin et al. (2006) showed that miR-21 is also upregulated in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). There are also study discovered upregulated of miR-21 in oral cancer and other cancer include breast, colon, pancreas, lung, prostate, liver, stomach, and glioblastoma. These facts strongly suggest that miR-21 may be one of the most important miRNAs in various types of cancers including oral cancer.

In study by Scapolli et al. (2010) showed that upregulated expression of miR-129 has been detected in oral cancer cell lines. Recently, there have been no reports suggesting downregulated of miR-129 towards oral cancer cell lines. However, its downregulated expression has been reported in bladder cancer and gastric cancer. Another study by Lu et al. (2013) showed that miR-129-2 was frequently hypermethylated in hepatocellular carcinoma cells (HCC) and clinical samples. Another study identified the down-regulated expression of miR-129-2 in HCC tissues in a manner reversely correlated with the levels of miR-129-2 methylation. It was also reported that miR-129 levels was low in cancer cell line than in neural and colorectal tissues. The function of miR-129 in tumorigenesis remains unclear however it might have diverse biological activities depending on the type of cancer.

In contrast, some miRNAs such as miR-34b, miR-100, miR-125b, miR-137 and miR-203 have been found to be significantly downregulated in OSCC samples. In terms of the functional analysis, transfection of miR-125b and miR-100 to OSCC-derived cells significantly reduced cell proliferation in some studies. A study done by Shiiba and friends (2010) found that the expression level of 133a and 133b in oral cancer were low. Downregulation of miR-133a has also been observed in bladder cancer and colorectal cancer progression. Besides that, decreased expression of miR-133b has also been demonstrated in bladder cancer and colorectal cancer. This could be due to direct genetic loss, alterations in their biogenesis pathway, epigenetic changes, altered transcription factor expression or changes to their target site where these mechanisms are still unclear.

Study by Peng et al. (2014) showed that miR-218 have been found to be downregulated, and suggested that miR-218 may function as a tumor suppressor gene in oral cancer. Moreover, recent studies have shown that miR-218 and let-7g can inhibit cell invasion and metastasis in gastric cancer and breast cancer. Examples of upregulation and downregulation of miRNA in cancer studies have been summarized and tabulated in Table 1 as shown below:

Table 1

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Cancer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-125b</td>
<td>Oral Cancer</td>
</tr>
<tr>
<td>miR-137</td>
<td>Breast Cancer</td>
</tr>
<tr>
<td>miR-203</td>
<td>Colorectal Cancer</td>
</tr>
</tbody>
</table>

(http://www.jidmr.com)
Table 1. miRNA expression in recent oral cancer studies.

<table>
<thead>
<tr>
<th>References</th>
<th>Samples/Materials</th>
<th>Methods</th>
<th>miRNA Deregulation</th>
</tr>
</thead>
</table>
| (Kozaki et al., 2008) | Oral cancer cell line | Quantitative reverse transcription-PCR (qRT-PCR) | upregulated: miR-374, miR-340, miR-224, miR-10a, miR-140, miR-181a, miR-146a, miR-126, miR-31, miR-9, miR-9*
 downregulated: miR-27a, miR-34b, miR-34c, miR-203, miR-302c, miR-23a, miR-27b, miR-34a, miR-215, miR-299, miR-330, miR-337, miR-107, miR-133b, miR-139, miR-139, miR-222, miR-204, miR-370, et-7d, miR-95, miR-302a, miR-367, let-7g, miR-23b, miR-128a, miR-148a, miR-155, miR-200c, miR-302b, miR-368, miR-122a, miR-371, let-7a, miR-26b, miR-30e-5p, miR-96
 |
 (Wong et al., 2008) | Tissues of tongue SCC | Quantitative reverse transcription-PCR (qRT-PCR) | upregulated: miR-184, miR-34c, miR-137, miR-372, miR-124a, miR-21, miR-124b, miR-31, miR-128a, miR-34b, miR-154, miR-197, miR-132, miR-147, miR-325, miR-181c, miR-198, miR-155, miR-30a-3p, miR-338, miR-17-5p, miR-104, miR-134, and miR-213
 downregulated: miR-133a, miR-99a, miR-194, miR-133b, miR-219, miR-100, miR-125b, miR-26b, miR-138, miR-149, miR-195, miR-107, and miR-139. |
 (Avissar et al., 2009) | Oral cancer cell line | Microarray | miR-21, miR-181d, miR-181b, miR-491, miR-455, miR-18a, miR-130b, miR-221, miR-193b, miR-181a, miR-18b | miR-375 |
 (Liu et al., 2009) | Oral cancer cell line | Quantitative reverse transcription-PCR (qRT-PCR) | upregulated: miR-31, miR-21, miR-96, miR-224, miR-182, miR-135b, miR-183, miR-301, miR-147, miR-373, miR-155, miR-223, miR-372, miR-130b, miR-187, miR-371, miR-34b, miR-34c, miR-216, miR-10a, miR-128b, miR-104
 downregulated: miR-100, miR-328, miR-99a, miR-124b, miR-149, miR-139, miR-124a, miR-204, miR-211 |
 (Scapoli et al., 2010) | Oral cancer cell line | Microarray | hsa-miR-489, hsa-miR-129, hsa-miR-23a, hsa-miR-214, hsa-miR-23b, hsa-miR-92, hsa-miR-25, hsa-miR-210, hsa-miR-212, hsa-miR-146b, hsa-miR-21, hsa-miR-338 | hsa-miR-520h, hsa-miR-197, hsa-miR-378, hsa-miR-135b, hsa-miR-224, hsa-miR-34a |
 (Rentoff et al., 2011) | Oral cancer cell line | Microarray | miR-658, miR-146b-3p, miR-1301, miR-665, miR-142-5p, miR-7, miR-142-3p, miR-21, miR-936, miR-206 | miR-817, miR-29b-2, miR-132, miR-548b-5p, miR-509-5p, miR-22 |
 (Lu et al., 2012) | Oral cancer cell line | Quantitative reverse transcription-PCR (qRT-PCR) | upregulated: miR-10b, miR-196a, miR-196b, miR-562-5p, miR-15b, miR-301, miR-148b, and miR-129a
 downregulated: miR-503 and miR-31 |
 (Soga et al., 2013) | Oral cancer cell line | Quantitative reverse transcription-PCR (qRT-PCR) | hsa-miR-31*, hsa-miR-31, hsa-miR-135b, hsa-miR-193a-5p, hsa-miR-103, hsa-miR-224, hsa-miR-93, hsa-miR-200c, hsa-miR-183, hsa-miR-203, hsa-miR-21, hsa-miR-223 | downregulated: hsa-miR-133a hsa-miR-376c hsa-miR-411, hsa-miR-30a-3p hsa-miR-489, hsa-miR-139-5p hsa-miR-483-5p hsa-miR-30e-3p hsa-miR-409-5p hsa-le-7c hsa-miR-486-5p |
 (Fukumoto et al., 2015) | Oral cancer cell line | Quantitative reverse transcription-PCR (qRT-PCR) | miR-126-5p, miR-145-5p, miR-145-3p, miR-26b-5p, miR-26a-5p, miR-204, miR-29c, miR-195, miR-30c, miR-10b, miR-656, miR-30e-5p, miR-140-5p, miR-223, miR-128-3p, miR-133-5p, miR-30d, miR-139-5p, miR-19b-1-5p, miR-598, miR-885-5p, miR-376c, miR-487b, miR-101, miR-886-5p, miR-140-3p, miR-30e, miR-125b, miR-378a-5p, miR-320, miR-139-5p, miR-26a-1-3p, miR-127-3p, miR-411, miR-30a-3p, miR-29c-5p, miR-376a, miR-26b-3p, miR-770-5p, miR-433, miR-375 |

Conclusions

Despite advances in treatment modalities, mortality rates of oral cancer patients have not markedly improved over the past three decades. Thus, better understanding of this disease needs to be discovered immediately. Many studies strongly suggest that miRNA plays crucial roles in many human cancers including oral cancer. This is because they have an important function in cellular processes including proliferation, differentiation, apoptosis, survival, motility, and morphogenesis. Recent advances in miRNA expression profiling have led to a better understanding of the oral cancer pathogenesis. This will lead to the discovery of
specific miRNA expression patterns that may become successful biomarkers for diagnosis and prognosis of oral cancer in the future.

Declaration of Interest

The authors report no conflict of interest.

Acknowledgments

We are thankful to grant provider from Ministry of Higher Education, Malaysia for Fundamental Research Grant Scheme (600-rmi/FRGS5/3/25/2015), and supports from Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh campus, Selangor, Malaysia.

References