Anatomical Variations of the Osteomeatal Complex in the Lateral Wall of Nose a Cadaveric Study

Vijaya Ramanathan¹, Anitha Krishnan Pandarathodyil², Anand Ramanathan³,⁴, Phrabhakaran Nambiar⁵

1. Department of Anatomy, Meenakshi Medical College and Research Institute, Enathur, Kanchipuram, 631552, India.
2. Faculty of Dentistry, SEGi University, 9 Jalan Teknologi, Taman Sains Selangor, PJU 5, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia.
3. Department of Oral Diagnostic Sciences, Faculty of Dentistry, SEGi University, 9 Jalan Teknologi, Kota Damansara, 47810, Petaling Jaya, Selangor.
4. Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia.
5. Faculty of Dentistry, MAHSA University, Saujana Putra, 42610, Malaysia.

Abstract

The morphology of the osteomeatal complex at the lateral wall of the nose varies greatly among different races and ethnic groups, indicating mandatory study of the surgical anatomy of this area for different populations. The aim of this study is to identify the shape, variations of the middle turbinate, distances, posterior extent measured between the three turbinates and the site of opening of maxillary sinus ostium in a sect of South Indian population. Twenty hemi sections of adult cadaveric heads were utilized for this study. Direct visual measurements were performed using a vernier caliper and a protractor. Majority of the specimens i.e., 85% showed Type I shape of the middle turbinate. The mean distance between anterior attachments of superior turbinate and middle turbinate was 16.95 mm. Posterior margin of middle turbinate ended more posteriorly in 90% specimens compared to inferior turbinate. The ostium of maxillary sinus opened in posterior 1/3rd of middle meatus in 60% specimens. Accessory middle turbinate was observed in 2 hemi sections. The ethnic anatomical variations were evident when compared with the Koreans. Being aware of these variations can guide the neurologist, otorhinolaryngologist, ophthalmologist and oral and maxillofacial surgeons who use the middle meatus and osteomeatal complex as a gateway to approach their respective regions of interest for surgical procedures.

Keywords: Accessory middle turbinate, Chronic rhinosinusitis, Middle meatus, Osteomeatal complex, Turbinate bones.

Received date: 03 December 2019

Accept date: 29 January 2020

Introduction

The anatomy of lateral wall of the nasal cavity is highly variable with the superior and middle turbinate developing from the ethmoidal bone whereas the inferior turbinate develops as a separate bone. Noticeably the lacrimal and sinus drainage system can be viewed clearly just by removing the anterior attachment of inferior and middle turbinate.¹

The main features of the lateral wall in the middle meatus region are a rounded elevation, the bulla ethmoidalis and a curved cleft, the hiatus semilunaris². This hiatus leads into the ethmoidal infundibulum, which is bordered medially by the uncinate process and laterally by the orbital plate of the ethmoid. The infundibulum extends upwards and forwards and is continuous with frontonasal recess into which the frontal sinus opens. The anterior ethmoidal cell/sinus opens into the infundibulum or the frontonasal recess, whereas the middle ethmoidal air cell/sinus opens on or above the bulla. The maxillary sinus ostium opens usually on the lateral aspect of the infundibulum between the middle third and posterior third of middle meatus. The area under the middle turbinate into which the maxillary sinus, frontal sinus and anterior ethmoidal system open is termed as the osteomeatal complex (OMC)³.

*Corresponding author:
Dr. Anand Ramanathan
Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
E-mail: drranand@um.edu.my
The OMC is bounded by the middle turbinate medially, lamina papyracea laterally, basal lamella superiorly and posteriorly. The inferior and anterior borders of OMC are open. The contents of this space are agger nasi, nasofrontal recess, infundibulum, bulla ethmoidalis and anterior group of ethmoidal air cells. The agger nasi is a prominence seen in the anterior attachment of middle turbinate.

Obstruction free OMC and mucociliary clearance are the key factors for ventilation and drainage of maxillary, frontal and anterior ethmoidal air cells.

Many sinuses open into the small expansible area of OMC making it more complex. Moreover, there is multitude of variations in each of these structures present in OMC, which is challenging to the otorhinolaryngologist who deals with this region.

Obstruction of the OMC in the middle meatus leads to mucosal congestion, which decreases the air flow and can significantly lead to obstruction of the paranasal drainage sites leading to chronic rhinosinusitis. An estimated 134 million Indians suffer from chronic sinusitis, which is more than the population of Japan. Extensive surgeries for OMC disease have been replaced by a minimally invasive surgery. Functional Endoscopic Sinus Surgery (FESS) treats chronic rhino sinusitis that is refractory to medical management.

The shape of middle turbinate has been classified into 3 types namely Type I where the anterior border of middle turbinate runs posteroinferiorly from its attachment to the conchal plate making an obtuse angle. In Type II, the anterior border runs inferiorly and then in a posteroinferior direction making a right angle. In Type III, the anterior border bulges anteriorly before it courses posteroinferiorly.

Physical templates of human cadaveric specimens and CT images have been evaluated to understand the anatomical variations of structures in the lateral wall of nose. The morphology of the lateral wall of the nose varies greatly among different races and ethnic groups, indicating mandatory study of the surgical anatomy of this area for different populations. Studies on morphological details of OMC and related structures from the population of Indian subcontinent are indeed scarce.

The aim of this study, performed on hemisected cadaveric heads in a sect of South Indian population, is to identify the shape of the middle turbinate, distances between the three turbinates, the extent of the posterior margins of middle and inferior turbinates, determine any variations in the middle turbinate and ascertain the site where the ostium of the maxillary sinus opens.

Materials and methods

Institutional and ethical clearance were obtained for this study. Twenty hemi sections of adult cadaveric heads of both the genders were utilized for this study.

![Figure 1. Photograph and illustration of (A & B) type I (C & D) type II and (E & F) type III shape of middle turbinate.](image-url)

This research was conducted in the Department of Anatomy of a Private Medical College in Tamil Nadu. A protractor and vernier caliper instruments were used for obtaining the necessary measurements. The following were the parameters studied: (i) Shape of the middle turbinate was noted, photographed and classified into the 3 types (Fig.1a to c). (ii) The distance between the anterior limit of superior and middle turbinate, middle and inferior turbinate. In addition, the distance between the posterior limit of superior and middle turbinate and middle and inferior turbinate (Fig. 2a). (iii) The extent of the posterior margins of middle and inferior turbinate.
Anatomical Variations in Lateral Wall of Nose
Vijaya Ramanathan and et al

(Fig. 2b, c). (iv) Other variations near the middle turbinate (Fig. 2d). (v) Site of opening of the ostium of maxillary sinus, whether in the anterior (Fig. 2e), middle (Fig. 2f) or posterior thirds of middle meatus (Fig. 2g) was noted.

Figure 2. Photographs showing (A) distance between the posterior limit of middle and inferior turbinate (B) the posterior end of middle turbinate extends more posteriorly than inferior turbinate (C) the posterior end of inferior turbinate extends more posteriorly to middle turbinate (D) accessory middle turbinate (white arrow) (E to G) site of opening of maxillary ostium in the (E) anterior (F) middle and (G) posterior one third of the middle meatus.

Results

In this study, three types of shape of middle turbinate were observed. About 85% of the specimens were of the Type I (Fig. 1a), 10% showed Type II (Fig. 1b) and about 5% of the specimens showed the Type III variety (Fig. 1c). The mean distance between anterior attachments of superior turbinate and middle turbinate was 16.95 mm whereas the mean distance between middle and inferior turbinate was 20.60 mm. Mean distance between posterior attachments of superior turbinate and middle turbinate was 9.4 mm, whereas between middle turbinate and inferior turbinate was 13 mm. The minimum, maximum, mean and standard deviation data for the above parameters are recorded in Table 1.

<table>
<thead>
<tr>
<th>Distance between</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior limit of superior and middle turbinate</td>
<td>12.00</td>
<td>22.00</td>
<td>16.95</td>
<td>2.017</td>
</tr>
<tr>
<td>Posterior limit of superior and middle turbinate</td>
<td>6.00</td>
<td>15.00</td>
<td>9.40</td>
<td>2.326</td>
</tr>
<tr>
<td>Anterior limit of middle and inferior turbinate</td>
<td>6.00</td>
<td>22.00</td>
<td>20.60</td>
<td>5.744</td>
</tr>
<tr>
<td>Posterior limit of middle and inferior turbinate</td>
<td>10.00</td>
<td>17.00</td>
<td>13.00</td>
<td>2.026</td>
</tr>
</tbody>
</table>

Table 1. Statistical analysis of distances between turbinates and angle of middle turbinate.
SD – standard deviation.

On comparing the posterior termination of the middle turbinate, it was observed that they ended more posteriorly to the inferior turbinate in 90% of the specimens (Fig.2a). In 2 hemi sections, accessory middle turbinate was seen and its length was 26 mm whereas in another it was 20 mm. They extended from the posterior end of lower border of middle turbinate to middle of upper border of inferior turbinate (Fig. 2d). The ostium of maxillary sinus opened in posterior 1/3rd of the middle meatus in 60% of specimens (Fig. 2e), in the middle 1/3rd in 35% specimens (Fig. 2f) and in 5% it opened in anterior 1/3rd of the middle meatus (Fig. 2g).

Discussion

Endoscopy is being used both for evaluating and treating diseases of nasal passage and paranasal sinuses. Hence the anatomy of the nasal passage and paranasal air sinuses has gained much attention in recent years. Moreover, as seen with most anatomical structures, the middle meatus and lateral nasal wall are also subjected to normal variations and this must be distinguished from pathologic changes. Interestingly cadaveric studies of anatomical variations in the lateral wall of nose can collectively reconstruct the three-dimensional geometry, which becomes useful for the operating otorhinolaryngologists.

Present study explores the morphological features of the lateral wall of nose in a sect of South Indian population. Morphological data on the lateral wall of the nose has been studied in
other ethnic population like Koreans who belong to the Mongolid race. The South Indian population represented in the present study exhibited the Type I shape of the middle turbinate, in contrast to the Korean population where Type I and II were predominant. This highlights the ethnic and racial differences present in the shape of middle turbinate amongst the Asian subpopulations. The middle turbinate has multiple functions such as olfaction, filtration, humidification, lubrication of upper airways, regulating airflow and temperature. Partial turbinectomy enhances the surgical access to the middle meatus during FESS and improves the surgical outcome in paradoxical middle turbinate, high septal deviation, narrow nasal pyramid and septal mucosal hypertrophy. However, if the anterior portion of middle turbinate is extensively removed it leads to destabilization. Hence, based on the anatomical findings presented here, it becomes logical to suggest that in Type I cases, care should be taken so as not to remove the olfactory filaments distributed in the anterior part of middle turbinate to ensure prevention of destabilization. However, in Type III cases, the middle turbinate appears large and bulged anteriorly and its removal ensures wider view during surgery. Endoscopic sinus surgery (ESS) may fail to control chronic rhinosinusitis due to anatomic variations that may prevent adequate mucociliary clearance and drug delivery. One of such anatomical variations is the resected middle turbinate, which may require revision ESS.

The mean distance between the anterior attachment of superior and middle turbinate in this study (actual mean) was less compared to the Koreans (theoretical mean). The wider distance between the anterior ends of the superior and middle turbinate may be due to the flat and wide based contour of the nose seen in the Korean subpopulation as compared to the Indians. In this study the mean distance between: (i) anterior attachment of middle and inferior turbinate, (ii) the posterior attachment of superior and middle turbinate and (iii) posterior attachment of middle and inferior turbinate were measured. Interestingly these values have not been reported so far. Variations in these parameters may prove to be of importance for surgeons who may have to deduce these distances and identify any overcrowding in this area. It forms potential drainage site for most of the paranasal sinuses. In addition, the width of the OMC is a significant predictor of effectiveness in the treatment of odontogenic maxillary sinusitis.

In this study, majority of the specimens showed that the middle turbinate extending more posteriorly than the inferior turbinate (90%) compared to only 40% in the study conducted by Lee et al (2006). In contrast, the posterior margin of inferior turbinate ended more posteriorly than middle turbinate in only 10% of specimens when compared to 26.3% in the study by 11). Moreover, there were no specimens in the present study, which had the posterior ends of middle and inferior turbinates proximal to each other. This is unlike in the Korean study where Lee et al. (2006) reported that 33.7% of their specimens had such an arrangement.

The middle turbinate should be preserved to avoid leaks, anosmia, frontal sinusitis and they play a pertinent role in maintaining laminar flow and efficient air conditioning. However if surgery is warranted, wide resection is necessary to expose the drainage sites and reduce the risk of complications.

In the present study, an accessory middle turbinate was seen in only 2 hemi sections. Lin, Lin, Su, Wang reported that a secondary middle turbinate co-existed with an accessory middle turbinate, thereby complicating any surgical procedure. However, the presence of a double middle turbinate and its removal significantly improved the blocked nose and frontal headache. Presence of accessory turbinate can aggravate rhinosinusitis and awareness of such variations can assist the treating surgeon to modify his management. However, there was no second middle turbinate reported in the present study.

The position of the opening of the ostium of maxillary sinus in the middle meatus was observed, and majority of them opened at the posterior 1/3rd of the middle meatus which is in agreement to other studies. This has direct implication towards the airflow pattern, mass flux and infection of the sinus. Airflow pattern within the nasal cavity models, with presence of only one ostium of maxillary sinus, either anteriorly or posteriorly in the middle meatus was studied. On inspiration, the airflow generated a high velocity vortex (swirl) at the ostium area with half of the velocity vectors going towards the maxillary sinus whereas the rest returning to the nasal cavity.
even before entering the sinus. During expiration the airflow circulates at the ostium entrance without going into the sinus. Therefore, the entering mass flux at the anterior ostium during peak inspiration was higher compared to the exhalation whereas, if the ostium is present posteriorly in the middle meatus, the entering mass flux was equal at peak inhalation and exhalation. Ventilation was less when the ostium was placed anteriorly that prevents the surface of the maxillary lining from drying and it maintains a high nitric oxide concentration which helps in prevention of pathogens from spreading within the sinus. Additionally, the entering mass flow rate is higher during inspiration, which may be related to its function of warming and humidifying the inhaled air. The presence of a second or accessory ostium causes different pattern of the airflow and the mass flux. It may also cause circular flow of the mucous from the accessory ostium to the natural ostium thus resulting in mucous recirculation.

Accessory maxillary ostium (AMO) have been reported in 19.1% of the subjects studied by CT scan whereas 0% to 43% in cadaveric studies. Cadaveric studies in Indians have reported the presence of AMO from 18.5% to 35%, 18.75% to 30% and 22.5% to 30% to 54%. In a related study 53.7% of patients with chronic sinusitis had 2 or more anatomical variations in OMC and 33.3% of cases showed at least a single anatomical variation. Patients with bilateral OMC obstruction were more likely to have asthma than unilaterally obstructed or unobstructed cases. In yet another study reported in India, patients in the age group of 11-30 years who suffered headaches due to a rhinogenic etiology was contributed by OMC diseases.

Thus, variations in normal anatomy of OMC could contribute to many pathologic conditions.

By understanding the anatomical variations, the otorhinolaryngologist and sinus surgeons can probably avert damages to the critical structures closely related to this area, including the orbit and base of skull. Patients usually show considerable improvement and relief of their symptoms after undergoing FESS. Preoperative evaluation of the various anatomical structures in the lateral wall of nose and OMC is important for ensuring surgical safety and success.

Conclusions

The lateral wall of nose at the middle meatus region overlies the osteomeatal complex, where numerous anatomical structures are sited. The present cadaveric study on South Indians was focused on the surgical anatomy at this area, there were considerable differences in the shape of middle meatus, distance between turbinates, variations in the posterior ends of middle and inferior turbinates. Variations in the middle turbinate in the form of accessory turbinate were observed and the position of the opening of ostium of maxillary sinus in the middle meatus has also been investigated. The present cadaveric study can complement the findings of nasal endoscopies and CT scans and thus help correlate the findings of other researchers on the anatomical structural variations that occur in this constrained yet an important region. This added
information from the cadaveric study would assist the neurologist, ophthalmologists, otorhinolaryngologist and oral and maxillofacial surgeons who might choose the OMC site for approaching their region of interest in various surgical techniques.

Acknowledgements

The authors would like to thank Dr. Srijaya Chandrabose Thekkeparambil for her help in formatting this manuscript and the illustrations of the figures. The authors also would like to thank Ms. Thamilarasi Thanaperumal and Mr. Wong Gou Rean for their help in citing and referencing of the document.

Declaration of Interest

The authors report no conflict of interest.

References

34. Afiza E, Takakura Y, Atsumi T, Masahiro I. A Study on Ostia Variation for Airflow Patterns within Nasal Cavity Models with Maxillary Sinus Vol 402015.