The Location and Diameter of the Primary Maxillary Sinus Ostium:
A Cone-Beam Computed Tomography Study in Malaysians

Sanual S. Peter¹, Phrabhakaran Nambiar²,³, Subramaniam Krishnan¹, Nisreen Mohammed AL-Namnam*¹

¹. Department of Anatomy, Faculty of Medicine, MAHSA University, 42610 Bandar Saujana Putra, Malaysia.
². Department of Oral Biology and Biomedical sciences, Faculty of Dentistry, MAHSA University, 42610 Bandar Saujana Putra, Malaysia.
³. Department of Oral and Maxillofacial clinical sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.

Abstract
A retrospective study using CBCT scan was employed to locate and measure the diameter of 320 primary maxillary ostium (PMO) (n = 160 subjects) among the Malay and Chinese populations (Mongoloid race) in Malaysia. Image analysis was performed using the i-CAT Vision Software, employing the multiplanar reconstruction window in which axial, coronal and sagittal planes were visualized in 0.3 mm intervals. The mean diameter of the PMO was significantly larger in the Chinese than the Malay. Females had larger size than the male and bilateral asymmetry was noticed, where the right side PMO was larger than the left side (p < 0.05). In addition, PMO opened more in the posterior third position of the hiatus semilunaris (61.9%) than anterior and middle third. The PMO showed a statistically significant posteriorly placed position in the Chinese than the Malays and this was more evident in the right side PMO (p < 0.01).

In conclusion, the PMO commonly opens in the posterior third of the hiatus semilunaris and its diameter is significantly greater in the Chinese female with evidence of bilateral asymmetry. This awareness is important during surgical intervention.

Keywords: Primary maxillary sinus ostium, dimension, location, CBCT, Mongoloid race.

Received date: 04 March 2020
Accept date: 10 April 2020

Introduction
Chronic rhinosinusitis (CRS) is a relevant and prevalent medical condition in the world¹. In Malaysia, the estimated prevalence rate of sinusitis is roughly 12.8%, thereby suggesting that about 3 million Malaysians are suffering from CRS at one given time². Rhinosinusitis is one of the widely spread disease in the region, however the role of the anatomical variants in its pathogenesis remains unclear³. Evolution can be partly blamed as it resulted in men attaining an erect posture and shifting the primary maxillary ostium to a higher position. Thereafter, drainage of the sinus was no longer due to gravity. All these factors cause mucociliary dysfunction which in turn led to the obstruction of the ostium that opens into the hiatus semilunaris⁴.

Since its inception 30 years ago, Functional Endoscopic Sinus Surgery (FESS) is now the treatment of choice for chronic sinusitis. The main objectives of FESS are to restore osteal patency and help mucociliary drainage (5). However, locating the natural ostium of the maxillary sinus can prove challenging⁶. This can be due to the anatomic variations of the uncinate process, bulla ethmoidalis and the size of the ostium itself⁷.

Thus far, there has been limited studies on the location of the maxillary sinus ostium using Computed Tomography⁸. There have been no researches concerning location and diameter of the primary maxillary ostium (PMO) among the Malaysian population, namely the Malay and Chinese ethnicities who have a Mongoloid ancestry. Retrospective study on Cone-Beam computed Tomography (CBCT) maxillary sinus scans of these ethnicities have been investigated to determine the following factors; presence, location and size of the PMO in the study images.
Materials and methods

Ethical approval
This study was approved by Institutional Medical Ethics Committee, Faculty of Dentistry, University of Malaya [Ref. No. DF OS1625/0075(P)].

Study design
Volumetric data of 160 patients consisting of 80 Malays (40 males, 40 females) and 80 Chinese (40 males, 40 females) who had been referred to the Oral and Maxillofacial Imaging Division, Faculty of Dentistry, University Malaya, Kuala Lumpur for various dental pathologies that required CBCT examination was selected. Bilateral maxillary sinuses (n = 320 maxillary sinuses) were retrospectively reviewed to identify location and diameter of primary maxillary ostium specific to each ethnic population. Inclusion criteria were as follows: Male/female of Malay and Chinese ethnicity; aged between 18-85 years; CBCT scanned images showing complete maxillary sinus including the osteomeatal complex. Exclusion criteria were as follows: Patients with polypoidal and other expansive lesions; scans that displayed poor image quality.

The maxillofacial CBCT examination was performed using i-CAT cone beam computed tomography (Imaging Sciences International, Hatfield, PA, USA) with tomography specifications of Tube Potential (Kv) 120, Current (mA) 5, Voxel Size (mm) 0.3 and scan time (s) 20-40 (Fig. 1). Image analysis was performed using the i-CAT Vision Software, employing the multiplanar reconstruction (MPR) window in which axial, coronal and sagittal planes were visualized in 0.3mm intervals.

Measurements
To ensure the accuracy of the anatomical structure’s depictions, all CBCT examinations were reviewed by a trained oral and maxillofacial radiologist before and after the measurements. The location of the primary maxillary ostium along the course of the hiatus semilunaris was identified. Subsequently, the maxillary sinus ostium diameter (mm) was measured from the inferior uncinate process to the superior lower bony portion of the ethmoidal sinus in the coronal view (Fig. 2a). The diameter was measured three times and subsequently the averaged reading was calculated to ensure reproducibility and reduce any subjective bias. The data was recorded and classified according to the ethnic groups and their gender.

Thereafter, the location of maxillary sinus ostium was determined, it was marked with the horizontal and vertical axis lines in the coronal section (Fig. 2a). When the sagittal section window was reviewed, the position of the point/marking was determined along the hiatus semilunaris (Fig. 2b). The position of the primary maxillary sinus ostium at the hiatus semilunaris were recorded and classified as being in the anterior third, middle third or posterior third of this hiatus. The hiatus semilunaris is interpreted as the opening between the anterior surface of the bulla ethmoidalis and the free edge of the uncinate process³.

Statistical analysis
The data analysis was done using Statistical Package for Social Science (SPSS) statistical software (Version 12.0; SPSS Inc., Chicago, Illinois, USA). Independent t-test was performed for comparing the diameter of the ostium between the two ethnicity groups and between the gender group. The significance value was set at (p < 0.05).

The data were transferred and subjected to descriptive analysis, to find the correlation between the location of the ostium along the hiatus semilunaris and the ethnic group, and also between the location of the ostium and the gender group using Pearson’s Correlation coefficient. The significance was set at the 0.01 level (2-tailed).

Results
In this study, the mean diameter of the PMO amongst those with Mongoloid ancestry in Malaysia was 1.92 mm ± 0.54. In addition, the mean diameter of the PMO was significantly (P = 0.019) greater in female (2.03mm ± 0.49) than the males (1.83 mm ± 0.56). By ethnicity, Chinese has greater ostium diameter (2.11mm ± 0.55) than the Malays (1.75mm ± 0.46) (p = 0.01). Interestingly, there was a significant difference in the mean diameter of the PMO bilaterally where the right side of PMO revealed greater diameter than the left side in both gender and ethnicity (Table 1).
The finding showed that the PMO most commonly opened in the posterior third location of the hiatus semilunaris in both male \([n \% = 102 (63.8\%)] \) and female \([n \% = 96 (60.0\%)] \) population. This position was also noticed in ethnic Malays \([n \% = 83 (51.9\%)] \) and Chinese \([n \% = 115 (71.9\%)] \). This was followed by anterior third position and lastly the middle third position. The comparison of the location of the PMO between the Malays and Chinese population showed a statistically significant result \((p < 0.01; \chi^2 = 20.44) \); the PMO in the Chinese is more frequently located in the posterior third position compared to the Malays. A comparison between the sides also showed statistically significant difference \((p < 0.01; \chi^2 = 15.23) \), with the right PMO frequently located in the posterior third position (Table 2).

Table 1: Mean diameter comparison of the primary maxillary ostium between genders, ethnicities and sides (\(n=320 \)).

\(\ast \) \(p \) value calculated for independent t test.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Anterior 1/3</th>
<th>Middle 1/3</th>
<th>Posterior 1/3</th>
<th>(\chi^2) value</th>
<th>(P) value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male ([n=160])</td>
<td>33 (20.6)</td>
<td>25 (15.6)</td>
<td>102 (63.8)</td>
<td>3.96</td>
<td>0.14</td>
</tr>
<tr>
<td>Female ([n=160])</td>
<td>30 (18.8)</td>
<td>34 (21.3)</td>
<td>66 (60.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malays ([n=160])</td>
<td>47 (29.4)</td>
<td>30 (18.8)</td>
<td>83 (51.9)</td>
<td>20.44</td>
<td>0.05</td>
</tr>
<tr>
<td>Chinese ([n=160])</td>
<td>16 (10.0)</td>
<td>29 (18.1)</td>
<td>115 (71.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ([n=160])</td>
<td>23 (14.4)</td>
<td>21 (13.1)</td>
<td>116 (72.5)</td>
<td>15.32</td>
<td>0.01</td>
</tr>
<tr>
<td>Left ([n=160])</td>
<td>40 (25.0)</td>
<td>38 (23.8)</td>
<td>82 (51.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>63 (19.7)</td>
<td>58 (18.4)</td>
<td>198 (61.9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Locations of the primary maxillary ostium (both sides) along the hiatus semilunaris (\(n=320 \)).

\(\ast \) Chi–square test.

Discussion

The anatomical variability in the ostia may be clinically important during surgical procedures such as Functional Endoscopic Sinus Surgery (FESS) and Balloon Catheter Dilation. The diameters of the PMO and their variable locations can give the oral surgeon and endoscopic sinus surgeons a better understanding as they can expect anatomical variations according to ethnicities, gender and the side of the sinus. This will determine the duration of the surgery, the possible complications associated with it as well as the best techniques and instrumentation to be used\(^6,10\). In addition, the decreased size of the PMO could lead to sinus obstruction, difficulty in mucus drainage and possibly increase the risk of maxillary sinusitis\(^11\). Anatomic variations such as infraorbital ethmoid cell (Haller Cell) could also cause the PMO diameter to be small leading to increasing pathogenic effect in the sinuses\(^3\).

Many studies have been carried out on PMO location in a homogenous population\(^8,12\), however, no research has been done in Malaysia concerning location and diameter of the primary maxillary ostium among the Mongoloid races.
Considering further on the anatomical variability, this study showed that the PMO mean diameter of the Mongoloid race in Malaysia is 1.92 mm with females having significantly larger diameters than males. Whereas in the study by Aust and Drettner (1974), they reported a mean diameter of 2.4 mm (using rhinomanometry and nomography methods) with no difference in the ostial size between genders. This difference could be explained as our sample population was a Mongoloid population, while their research was on Caucasoid. In the study by Tarhan et al. (2005), they used acoustic rhinometry method to determine the maxillary ostium size in Turkish population. They revealed that the ostial diameter ranged from 0.8-2 mm which was similar than those recorded in other populations.

Furthermore, our study showed a significant difference in bilateral PMO diameters between Malay and Chinese population were compared. This is indeed interesting in that despite having the same racial origin, variations in ethnicity caused the difference in PMO size. This could be possibly explained that generally the Chinese had larger PMO size to help with the warming and humidification of the cold air as many of them have been living in the cold parts of China prior to migrating to Malaya. On the contrary, the Malays have been living for a longer period of time in the hot, humid, tropical climate of Malaysia and this environmental factor could have possibly caused evolutionary changes with the shrinkage of their PMO size as warming and humidification of the air are not as essential. This proved similar in the Samoans, where its quoted: “Samoans are of the Mongoloid race, but their features represent a slightly different evolution and it showed a statistically significant difference. However, the comparisons between the genders was not statistically significant. Comparisons were also done between the Malay and Chinese ethnicity, and it showed a statistically significant difference. The difference between both ethnicities could be possibly related to the environmental factors at play as the Malays have been living longer in the tropics compared to the Chinese.

Surprisingly, our study showed a greater anterior third position of PMO, which is almost 19.6% of our sample population. This can be problematic as Sikand (2011) mentioned that the anterior superior position of the natural ostium could be difficult to identify as it is located close to the uncinated attachment. In addition, Cone-Beam Computed Tomography (CBCT) could also be utilized to its full potential in Malaysia as pre-
operative modality before any intervention on the maxillary ostia or sinus as it depicts the osteomeatal unit and the sinus accurately with clarity and with a 3- dimensional option as well.

Conclusions

This study clearly shows the anatomic variations of the primary maxillary ostium in the two largest ethnic groups of the Mongoloid race in Malaysia, the Malays and Chinese. The mean diameter of the primary maxillary ostium among Mongoloid race is significantly greater in female than the males and in the Chinese than the Malays. The diameter of the maxillary sinus indicated bilateral asymmetry, where the right side revealed greater diameter than the left side in both gender and ethnicity, this was hardly reported in other earlier studies. The maxillary ostium commonly opens into the posterior third of the hiatus but with a greater anterior third position when compared with other populations. This knowledge about the PMO diameter and location variations is crucial when determining the direction and angles that the guidewire should be manipulated to enter the natural ostium successfully and thereby avoiding any untoward complications.

Acknowledgements

This work was supported by University of MAHSA Research grant (RP93-09/16).

Declaration of Interest

The authors declare that they have no conflict of interest.

References