Buccal Corridor as Component of Mini Aesthetic on Caucasoid, Mongoloid, and Negroid Race

Alfri Yuslizar Anhar¹, Ari Triwardhani²*, Alida²

1. Undergraduate Student, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia.
2. Department of Orthodontics, Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia.

Abstract
Buccal corridor is one of the components of smile aesthetic that needs to be examined before orthodontic treatment is started. One of the factors that can affect buccal corridor's aesthetic is race. Currently, there is no study that compares buccal corridor as a component of mini aesthetic among Caucasoid, Mongoloid and Negroid race. The aim of this study is to compare buccal corridor as a component of mini aesthetic among Caucasoid, Mongoloid and Negroid race.

This literature review is done by conducting literature search on Science Direct, Ebscohost, PubMed, Scopus, and Google Scholar database to acquire studies that evaluates buccal corridor as a component of mini esthetics using either Caucasoid, Mongoloid or Negroid population.

On Caucasoid subjects, narrow buccal corridor has good esthetics. On Mongoloid and Negroid subjects, medium buccal corridor has good esthetics.

Buccal corridor as a component of mini esthetics is not only affected by race but also other psychosocial factors.

Keywords: Human health, Dentistry, Orthodontics, Medicine, Good Health and Well-Being.

Introduction

The prevalence of malocclusion is quite high. In Indonesia, the prevalence of malocclusion reaches 80% out of the total population with only 0.7% of them receives orthodontic treatment1-2. Some of the reasons why people seek orthodontic treatment are disfunction and/or discomfort during occlusal activity, and aesthetic. The research done by Faiz et al. shows that aesthetic is one of the common reasons people seek orthodontic treatment3.

Orthodontic treatment can affect dento-alveolar structures. With the correction of dento-alveolar structure through orthodontic treatment, the arrangement of teeth and components of smile that can affect smile aesthetic can also be corrected. One of the components of smile aesthetic is buccal corridor width4-6.

The research done by Ker et al. shows that the ideal buccal corridor width is 16% out of the total width of the smile (measured between two lip commissures) with minimum amount of acceptable buccal corridor is 8% and the maximum amount of buccal corridor is 22%7. The research done by Parekh et al. shows that on Caucasoid population, narrow buccal corridor is the most aesthetic8. The research done by Nascimento et al. shows that on Negroid population, medium buccal corridor has the best aesthetic9. From this premises, it is suggested that race can affect buccal corridor in smile aesthetic. Currently, there is no literature that compares the aesthetic of buccal corridor between Caucasoid, Mongoloid, and Negroid population. Hence, the aim of this study is to review the buccal corridor as a component of mini aesthetic on the Caucasoid, Mongoloid and Negroid population.

Materials and methods

A strategic literature search was conducted on Science Direct database by using the keyword "buccal corridor”. The literatures were selected based on certain inclusion criteria, restricting the literature selection only to literatures that conduct cross sectional experiment on the aesthetic aspect of various
width of buccal corridor in either Caucasoid, Mongoloid, or Negroid population using visual analog scale system within the last 16 years (2005-2021). Numerous additional literatures were retrieved from Ebscohost, PubMed, Scopus and Google Scholar database following the same inclusion criteria. The flow chart of this literature search process is presented on Figure 1.

Results

After conducting literature search, a total of 622 literatures related to “buccal corridor” from Science Direct, and 39 additional literatures from Ebscohost, PubMed, Scopus & Google Scholar were retrieved. Said literatures were then identified from the titles and then screened from the abstracts. After evaluating the eligibility of literatures based on the inclusion criteria by reading the full-text articles, total of 25 literatures is included in this literature review. The qualitative data from the literatures are gathered and presented on Table 1.

Discussion

Various examinations, diagnosis, and treatment planning is the standard procedure before carrying orthodontic treatment. Accurate examinations will result in correct diagnosis. Correct diagnosis will yield proper treatment planning. Proper treatment planning will result in satisfactory occlusion and smile. This demonstrate the importance in the first step of orthodontic treatment which is examination. Examination can be done both clinically and through various patient records such as dental cast, radiographic photos, and intra oral & extra oral photos. One of the smile characteristics that can be examined through intra oral & extra oral photos are smile aesthetic. Aesthetic in dental field can be categorized into micro aesthetic, mini aesthetic, and macro aesthetic. Micro aesthetic is the component of smile aesthetic that overviews the relation and arrangement between one tooth and the others. Mini aesthetic is the component of smile aesthetic that overviews the relation between teeth and other immediate tissues such as the inner commissure of the lip in which is called buccal corridor. Macro aesthetic is the component of smile aesthetic that overviews the relation between the whole face and the other races.

The research done by Moore et al.15, Zange et al.16, Pithon et al.17, and Lacerda-Santos et al.18, on the Alpine Caucasoid race populations, Kiani et al.13, Al Taki et al.19, Sadraghishghi et al.20, Afsari et al.21, Mollabashi et al.22, and Rajeev et al.23, on the Mediterranean Caucasoid race populations, and loi et al.24,25, on the Northern Mongoloid race populations show that narrow buccal corridor is considered the most aesthetic compared to medium and wide buccal corridor. These findings are congruent with the research done by Martin et al.26, and Parekh et al.8, on the Alpine Caucasoid race populations and the research done by Badran & Mustafa27, and Alper Oz et al.28, on the Mediterranean Caucasoid race populations in which they all considered that wide buccal corridor has worst aesthetic and narrow buccal corridor considered to be the most aesthetic.

The research done by Chotimah et al.29, Trisnawaty30, Nimbalkar et al.31, Charoenpong et al.32, on the Southern Mongoloid race population all shows that medium buccal corridor has the best aesthetic compared to narrow and wide buccal corridor. The research done by Nascimento et al.9, on the Negroid race population also shows similar finding in which medium buccal corridor has superior aesthetic compared to the other two variations of buccal corridor width. The research done by Pisulkar, et al.33, on the Mediterranean Caucasoid race
population suggests that a buccal corridor that is too narrow can reduce the aesthetic of the smile because it gives the impression of an unnatural smile similar to the looks of prosthetic denture smile.

Some research yields contradictory results to other research mentioned before. The research done by Roden-Johnson et al.34, and Meyer et al.35, on the Alpine Caucasoid race population and Srinivas et al.36, on the Mediterranean Caucasoid race population suggest that the variation of buccal corridor width has no significant effect on smile aesthetic.

Caucasoid race according to Kalistu et al. tends to have narrow transversal dimension of the face hence categorized as dolichofacial face. Caucasoid race also known to have relatively narrow dental arch compared to another race37. According to the research done by Kaur et al., dolichofacial individuals tend to have thin masseter muscle and small muscle tonicity. The congruency between transversal dimension of the face and transversal dimension of dental arch, also the small tonicity of masseter muscle can cause a narrow buccal corridor. These findings could help explain the results of this literature review in which in most of the Caucasoid population, narrow buccal corridor is the most aesthetic compared to medium or wide buccal corridor.

Mongoloid race according to Pickering & Bachman tends to have wide transversal dimension of the face and medium width of the dental arch14. The discrepancy between transversal dimension of the face and transversal dimension of dental arch has the probability to results in medium buccal corridor. These findings could help explain the result of this literature review in which in Southern Mongoloid population medium buccal corridor is the most aesthetic.

Negroid race according to Pickering & Bachman tends to have narrow transversal dimension of face and medium transversal dimension of dental arch but on the other hand Negroid race tends to have brachyfacial face type14. Brachyfacial face type tends to have high tonicity of masseter muscle. Research done by Kaur et al. shows that high tonicity of masseter muscle can increase the size of buccal corridor.39 This could help explain the result of this literature review in which in Negroid population medium buccal corridor is considered the most aesthetic.

There are few contrasting findings in this literature review. The research done in Mongoloid population by Chotimah et al.29, Trisnawaty30, Nimbalkar et al.31, Charoenpong et al.32, Pisulkar, et al.33, shows that medium buccal corridor is the most aesthetic, while the research done also in Mongoloid population by loi et al.24,25, shows that narrow buccal corridor is the most aesthetic. The research done in Mediterranean Caucasoid population by Kiani et al.13, Al Taki et al.19, Sadraghighi et al.20, Afsari et al.21, Mollabashi et al.22, and Rajeev et al.23, shows that narrow buccal corridor is the most aesthetic, while the research done also in Mediterranean Caucasoid population by Pisulkar, et al.33, shows that medium buccal corridor is the most aesthetic. This demonstrates that race is not the only factor affecting the aesthetic of buccal corridor. According to Chotimah et al., other factors that can affect buccal corridor are social environment and psychosocial condition of the evaluator29.

The contradictory results from the research done by Roden-Johnson et al.34, Meyer et al.35, and Srinivas et al.36, was probably caused by the difference in the principle of research methods. Roden-Johnson et al.34, conduct research by measuring buccal corridor from inner commissure of lip to buccal surface of canine teeth, while all the other research included in this literature review measure buccal corridor from inner commissure of lip to buccal surface of the most posterior teeth visible. Meyer et al.35, and Srinivas et al.36 both conduct research by gathering large amount of subject then frontal extra oral picture of their subjects are taken and categorize them according to the width of buccal corridor, while all the other research included in this literature review use few subject whose extra oral picture is digitally modified to yields variation of buccal corridor.

Conclusions

Based on the findings of this literature review, it can be concluded that race is not the only factor affecting the buccal corridor in smile aesthetic. Other factors such as social environment and psychosocial condition of a person can also affect buccal corridor as component of smile aesthetic.

Declaration of Interest

The authors report no conflict of interest.
<table>
<thead>
<tr>
<th>No</th>
<th>Authors, Year</th>
<th>Sample</th>
<th>Aim</th>
<th>Population</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Moore et al., 2005</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion 2%, 10%, 15%, 22% and 28% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Alpine Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>2</td>
<td>Zange et al., 2011</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion 2%, 10%, 15%, 22% and 28% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Alpine Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>3</td>
<td>Pithon et al., 2014</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion 2%, 10%, 15%, 22% and 28% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Alpine Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>4</td>
<td>Lacerda-Santos et al., 2015</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 0%, 5%, 10%, 15%, 20%, 25% and 30% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Alpine Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>5</td>
<td>Martin et al., 2007</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce narrow, medium and wide buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Alpine Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>6</td>
<td>Parekh et al., 2007</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce narrow, medium and wide buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Alpine Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>7</td>
<td>Roden-Johnson et al., 2005</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce smile with buccal corridor and smile without buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Alpine Caucasoid</td>
<td>Variation of buccal corridor has no effect on smile aesthetic.</td>
</tr>
<tr>
<td></td>
<td>Authors, Year</td>
<td>Methodology</td>
<td>Evaluation Target</td>
<td>Caucasian Subgroup</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Meyer et al., 2014</td>
<td>Frontal photo of numerous subjects after orthodontic treatment with and without extraction is taken and categorized based on the width of buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Alpine Caucasoid</td>
<td>Variation of buccal corridor has no effect on smile aesthetic.</td>
</tr>
<tr>
<td>9</td>
<td>Kiani et al., 2013</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 0%, 4%, 8%, 12% dan 16% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>10</td>
<td>Al Taki et al., 2016</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce narrow, medium and wide buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>11</td>
<td>Sadrhaghighi et al., 2015</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce narrow, medium and wide buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>12</td>
<td>Afsari et al., 2018</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 2%, 10%, 15% and 22% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>13</td>
<td>Mollabashi et al., 2018</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 2%, 15% and 28% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>14</td>
<td>Rajeev et al., 2018</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 2%, 10%, 15%, 22% and 28% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>15</td>
<td>Badran & Mustafa, 2013</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 0%, 5%, 10%, 15%, 20%, and 25% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>16</td>
<td>Alper Öz et al., 2017</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 0%, 4%, 8%, 12%, 16%, 20% and 24% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>Pisulkar et al., 2019</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce narrow, medium, and wide buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Medium buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>18</td>
<td>Srinivas et al., 2018</td>
<td>Frontal photo of numerous subjects is taken and categorized based on the width of buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Mediterranean Caucasoid</td>
<td>Variation of buccal corridor has no effect on smile aesthetic.</td>
</tr>
<tr>
<td>19</td>
<td>Ioi et al., 2009</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 0%, 5%, 10%, 15%, 20% and 25% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Northern Mongoloid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>20</td>
<td>Ioi et al., 2012</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 0%, 5%, 10%, 15%, 20% and 25% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Northern Mongoloid</td>
<td>Narrow buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>21</td>
<td>Chotimah et al., 2017</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce narrow, medium and wide buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Southern Mongoloid</td>
<td>Medium buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>22</td>
<td>Trisnawaty, 2017</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 0%, 5%, 10%, 15%, 20% and 25% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Southern Mongoloid</td>
<td>Medium buccal corridor is the most aesthetic.</td>
</tr>
<tr>
<td>23</td>
<td>Nimbalkar et al., 2016</td>
<td>Digitally manipulated frontal picture of subject with normal occlusion to produce 2%, 10%, 15%, 22%, and 28% buccal corridor.</td>
<td>To evaluate the effect of buccal corridor width variation to smile aesthetic.</td>
<td>Southern Mongoloid</td>
<td>Medium buccal corridor is the most aesthetic.</td>
</tr>
</tbody>
</table>
Table 1. List of published research between 2005-2021 included in the present review, evaluating the effect of buccal corridor width variation on smile aesthetic.

Number	Authors, Year	Study Design	Participants	Method	Results
24	Charoenpong et al., 2017	Digitally manipulated frontal picture of subject with normal occlusion to produce 2%, 10% 15%, 22% and 28% buccal corridor.	To evaluate the effect of buccal corridor width variation to smile aesthetic.	Southern Mongoloid	Medium buccal corridor is the most aesthetic.
25	Nascimento et al., 2012	Digitally manipulated frontal picture of subject with normal occlusion to produce 6%, 16%, and 26% buccal corridor.	To evaluate the effect of buccal corridor width variation to smile aesthetic.	Negroid	Medium buccal corridor is the most aesthetic.

References